arrow-kt.1o

Super-charge your build with

Arrow Analysis

Alejandro Serrano Mena - Tweag I/0

(?.let { it + " is awesome" }

One of the most celebrated Kotlin
features is nullability analysis

(?.let { it + " is awesome" }

One of the most celebrated Kotlin
features is nullability analysis HOTRONE

NullReference

Exception

(?.let { it + " is awesome" }
One of the most celebrated Kotlin
features is nullability analysis

e Mark possibly-nullable values with ?
e Safe access via Elvis operators ?. and ?:

K?.let { it + " is awesome" }

One of the most celebrated Kotlin
features is nullability analysis

e Mark possibly-nullable values with ?
e Safe access via Elvis operators ?. and ?:
e Powerful static data and control flow analysis

if (list == null) A
list.map { it + 1 }
}

Why stop there?

Nullability analysis saves us from NullReferenceException

Wrong indexing leads to Index0Out0fBoundsException

list.get(2)

Bad initialization leads to I1legalArgumentException

Person(age = -1)

Arrow Analysis to the rescue!

Nullability analysis saves us from NullReferen ception

Wrong indexing leads to IndexOutOfBoundsj
list.get(2)

Bad initialization leads to I1legalArgu

Person(age = -1)

A Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

A Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

e Runs as part of your build, as a compiler plug-in

A Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

e Runs as part of your build, as a compiler plug-in
e Checks information provided as annotations
o As with nullable types and require

A Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

e Runs as part of your build, as a compiler plug-in

e Checks information provided as annotations
o As with nullable types and require

e Understands the order and branching of your code
o As opposed to a simpler linter

B Counting semaphore

Incrementing the semaphore should
only happen for positive numbers

import arrow.analysis.pre

fun increment(x: Int): Int {
pre(x > 0) { "value must be positive" }
return x + 1

B Counting semaphore

Incrementing the semaphore should
only happen for positive numbers

val example = increment(-1)
e: pre-condition "value must be positive

is not satisfied in “increment(-1)°
— unsatisfiable constraint: (-1 > 0)°

'] Flow-awareness

Flow (1f, when, other calls) is taken into account
when deciding whether a condition is satisfied

val new = if (current > 1) {

increment(current)
} else {

log("weird...")

0

After the call

The following code is rejected
increment(increment (1))
because increment makes no promises about its result

fun increment(x: Int): Int {
pre(x > 0) { "value must be positive" }
return x + 1

After the call

The following code is rejected what can we
promise?

0@
because increment makes no promises about its result

increment(increment(1))

fun increment(x: Int): Int {
pre(x > 0) { "value must be positive" }
return x + 1

Post-conditions

The following code is accepted
increment(increment (1))
because increment makes promises about its result

fun increment(x: Int): Int {
pre(x > 0) { "value must be positive" }
return (x + 1)
.post({ it > 0 }) { "result is positive" }

Post-conditions are checked

fun increment(x: Int): Int {
val new = if (x < 0) A{
@ // fails to satisfy the post-condition
} else A
X + 1

}

return new.post({ it > 0 }) { "positive" }

}

Post-conditions are checked

fun increment(x: Int): Int {
val new = if (x < 0) {
@ // fails to satisfy the post-condition

} else {

} awareness

return new.post({ it > 0 }) { "positive" }

}

& The magic

How does Arrow Analysis know that this holds?

fun increment(x: Int): Int {
pre(x > 0) { "value must be positive" }
return (x + 1)
.post({ it > 1 }) { "result is positive" }

Hre—magre The reasoning engilne

How does Arrow Analysis know that this holds?

fun increment(x: Int): Int {
pre(x > 0) { "value must be positive" }
return ()
.post({ it > 1 }) { "result is positive" }

X > 0 &&
— result > 1 ?

SMT solver

wn OMT solvers
Satisfiability Modulo Theories

Specialized software for automatic reasoning

Very fast but limited to a few theories:
#numbers EE bitvectors @ regular expressions ...

Several industrial-grade solvers Z3 'CVC5, SMTinterpol

We interface with them using java-smt

1
J

Fields

We can refer to fields or properties of values

fun List<Double>.average() {

pre(this.isNotEmpty()) { "list not empty" }
return this.sum() / this.size

}.

o
I

Fields

We can refer to fields or properties of values

fun List<Double>.average() {

return this.sum() / this.size

}.

Otherwise ArithmeticException may be thrown

0)division by zero

1
J

Fields

We can refer to fields or properties of values

fun List<Double>.average() {

pre(this.isNotEmpty()) { "list not empty" }
return this.sum() / this.size

}.

Arrow Analysis knows about the relationship

this.isNotEmpty() & this.size > 0

o
I

Fields

We can refer to fields or properties of values

0O {
{ "1list not empty" }
1s.size

fun List<Do
pre(this.
return th

}.

Arrow Analysis knows about the relationship

this.isNotEmpty() & this.size > 0

s Laws

Encode pre- and post-conditions separate from implementation

@Law

inline fun <E> List<E>.getlLaw(index: Int): E {
pre(index = 0 && index < size) { "within bounds" }
return get(index)

}.

Inspired by TypeScript declaration files,
but using JVM-specific features, like annotations

s Laws

Encode pre- and post-conditions separate from implementation

@Law

inline fun <E> List<E>.getlLaw(index: Int): E {
pre(index = 0 && index < size) { "within bounds" }
return get(index)

}.

Currently annotated: K standard library
&

Nextin our radar: <> (much larger, help more than welcome)

—

Invariants

Al

Conditions which apply to a whole type

data class Positive(val value: Int) {
init { require(value > 0) }

}

Useful to avoid repeating conditions again and again

data class Person(val age: Positive, ...)

=: Invariants

—J

[

Invariants are assumed when using that type

data class Positive(val value: Int) {
init { require(value > 0) }

operator fun plus(other:) =
Positive(this.value + other.value)

this.value > 0 &&
—> this.value + other.value > 0 e 101

Invariants in value classes

Al

More compile checks with the same runtime performance!

@JvmInline
value class Positive(val value: Int) {
init { require(value > 0) }

}

Defining your domain more strictly is A Good Thing™

" Practical matters

How do I add Arrow Analysis to my project?

Our Gradle plug-in adds it to your build
Instructions available at arrow-kt.io/docs/analysis

How much does it add to my compile times?

Our (very) preliminary results say that around 3x

Does it integrate with Intellif?

Tighter 1ntegration

Does it integrate with Intellif?

v © arrow-analysis-mpp-template [build]: faile 20sec.544ms e: /home/serras/arrow/arrow-analysis-mpp-template/src/commonM:

v 9 2 3 sec, 687 ms % A = . A ¥
,c°mp'leK°tl'“Jvm SIers s — unsatisfiable constraint: “true 8& (0 < (numbers.size))
v i example.kt src/commonMain/kotlin 2 errors
5

@ pre-condition ‘index within bounds’ is not satisfied
© pre-condition ‘index within bounds" is not satisfied 0" bound to param “index in ‘kotlin.collections.List.get’

— in branch: 8 == null, numbers == null

The new Kotlin Frontend IR promises better integration

Our plan is to migrate once the API stabilizes

Tighter 1ntegration

Does it integrate with GitHub? &

4 - 0 // + numbers[0] + numbers[1] // <- problems!
4 + 0 + numbers[0] + numbers[1] // <- problems!

X Check failure on line 4 in src/commonMain/kotlin/example.kt
() Code scanning
A pre-condition for a (method, property, function) is are not satisfied = @ Error

pre-condition index within bounds is not satisfied in numbers[0]
-> unsatisfiable constraint: true && (0 < (numbers.size))

->

0 bound to param index in kotlin.collections.List.get

-> in branch: 0 !'= null, numbers != null

Show more details

9,

ANALYSIS

Pre-, post-condition, and
invariant checks for your Kotlin
code

arrow-kt.1io

