
Arrow Analysis
Super-charge your build with

Alejandro Serrano Mena – Tweag I/O

arrow-kt.io

 ..let { it + " is awesome" }

One of the most celebrated Kotlin
features is nullability analysis

 ..let { it + " is awesome" }

One of the most celebrated Kotlin
features is nullability analysis no more

NullReference
Exception

 ..let { it + " is awesome" }

One of the most celebrated Kotlin
features is nullability analysis

● Mark possibly-nullable values with ?
● Safe access via Elvis operators .. and .:

 ..let { it + " is awesome" }

One of the most celebrated Kotlin
features is nullability analysis

● Mark possibly-nullable values with ?
● Safe access via Elvis operators .. and .:
● Powerful static data and control flow analysis

if (list .= null) {
 list.map { it + 1 } // no /. required
}

Why stop there?

Nullability analysis saves us from NullReferenceException

Wrong indexing leads to IndexOutOfBoundsException

 list.get(2) // what if fewer elements?

Bad initialization leads to IllegalArgumentException

 Person(age = -1) // not really an age

Arrow Analysis to the rescue!

Nullability analysis saves us from NullReferenceException

Wrong indexing leads to IndexOutOfBoundsException

 list.get(2) // what if fewer elements?

Bad initialization leads to IllegalArgumentException

 Person(age = -1) // not really an age

 Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

 Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

● Runs as part of your build, as a compiler plug-in

 Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

● Runs as part of your build, as a compiler plug-in
● Checks information provided as annotations

○ As with nullable types and require

 Arrow Analysis

Flow-aware static analyzer for pre-,
postconditions and invariants for Kotlin

● Runs as part of your build, as a compiler plug-in
● Checks information provided as annotations

○ As with nullable types and require
● Understands the order and branching of your code

○ As opposed to a simpler linter

🚦 Counting semaphore

Incrementing the semaphore should
only happen for positive numbers

import arrow.analysis.pre

fun increment(x: Int): Int {
 pre(x > 0) { "value must be positive" }
 return x + 1
}

🚦 Counting semaphore

Incrementing the semaphore should
only happen for positive numbers

val example = increment(-1)

e: pre-condition `value must be positive`
 is not satisfied in `increment(-1)`
 /> unsatisfiable constraint: `(-1 > 0)`

🗠 Flow-awareness

Flow (if, when, other calls) is taken into account
when deciding whether a condition is satisfied

val new = if (current > 1) {
 increment(current) // fine
} else {
 log("weird...")
 0
}

↪ After the call

The following code is rejected

 increment(increment(1))

because increment makes no promises about its result

 fun increment(x: Int): Int {
 pre(x > 0) { "value must be positive" }
 return x + 1
 }

↪ After the call

The following code is rejected

 increment(increment(1))

because increment makes no promises about its result

 fun increment(x: Int): Int {
 pre(x > 0) { "value must be positive" }
 return x + 1
 }

what can we
promise?

↪ Post-conditions

The following code is accepted

 increment(increment(1))

because increment makes promises about its result

 fun increment(x: Int): Int {
 pre(x > 0) { "value must be positive" }
 return (x + 1)
 .post({ it > 0 }) { "result is positive" }
 }

🔄 Post-conditions are checked

fun increment(x: Int): Int {
 val new = if (x < 0) {
 0 // fails to satisfy the post-condition
 } else {
 x + 1
 }
 return new.post({ it > 0 }) { "positive" }
}

🔄 Post-conditions are checked

fun increment(x: Int): Int {
 val new = if (x < 0) {
 0 // fails to satisfy the post-condition
 } else {
 x + 1
 }
 return new.post({ it > 0 }) { "positive" }
}

flow-
awareness

🔮 The magic

How does Arrow Analysis know that this holds?

 fun increment(x: Int): Int {
 pre(x > 0) { "value must be positive" }
 return (x + 1)
 .post({ it > 1 }) { "result is positive" }
 }

⚙ The magic The reasoning engine

How does Arrow Analysis know that this holds?

 fun increment(x: Int): Int {
 pre(x > 0) { "value must be positive" }
 return (x + 1)
 .post({ it > 1 }) { "result is positive" }
 }

x > 0 .& result = x + 1
 ..> result > 1 ?

SMT solver

��

 SMT solvers
Satisfiability Modulo Theories

Specialized software for automatic reasoning

Very fast but limited to a few theories:
 #⃣ numbers 🧮 bitvectors 🪢 regular expressions …

Several industrial-grade solvers SMTInterpol

We interface with them using java-smt

📋 Fields

We can refer to fields or properties of values

 fun List<Double>.average() {
 pre(this.isNotEmpty()) { "list not empty" }
 return this.sum() / this.size
 }

📋 Fields

We can refer to fields or properties of values

 fun List<Double>.average() {
 pre(this.isNotEmpty()) { "list not empty" }
 return this.sum() / this.size
 }

Otherwise ArithmeticException may be thrown

 0⃣ division by zero

📋 Fields

We can refer to fields or properties of values

 fun List<Double>.average() {
 pre(this.isNotEmpty()) { "list not empty" }
 return this.sum() / this.size
 }

Arrow Analysis knows about the relationship

 this.isNotEmpty() ..> this.size > 0

📋 Fields

We can refer to fields or properties of values

 fun List<Double>.average() {
 pre(this.isNotEmpty()) { "list not empty" }
 return this.sum() / this.size
 }

Arrow Analysis knows about the relationship

 this.isNotEmpty() ..> this.size > 0

HOW?

⚖ Laws

Encode pre- and post-conditions separate from implementation

 @Law
 inline fun <E> List<E>.getLaw(index: Int): E {

pre(index .= 0 .& index < size) { "within bounds" }
return get(index)

 }

Inspired by TypeScript declaration files,
but using JVM-specific features, like annotations

⚖ Laws

Encode pre- and post-conditions separate from implementation

 @Law
 inline fun <E> List<E>.getLaw(index: Int): E {

pre(index .= 0 .& index < size) { "within bounds" }
return get(index)

 }

Currently annotated: standard library

Next in our radar: (much larger, help more than welcome)

📑 Invariants

Conditions which apply to a whole type

 data class Positive(val value: Int) {
 init { require(value > 0) }
 }

Useful to avoid repeating conditions again and again

 data class Person(val age: Positive, ...)

📑 Invariants

Invariants are assumed when using that type

 data class Positive(val value: Int) {
 init { require(value > 0) }

 operator fun plus(other: Positive) =
 Positive(this.value + other.value)
 }

this.value > 0 .& other.value > 0
 ..> this.value + other.value > 0 ? ��

📑 Invariants in value classes

More compile checks with the same runtime performance!

 @JvmInline
 value class Positive(val value: Int) {
 init { require(value > 0) }
 ...
 }

Defining your domain more strictly is A Good Thing™

🐘 Practical matters

How do I add Arrow Analysis to my project?

 Our Gradle plug-in adds it to your build
 Instructions available at arrow-kt.io/docs/analysis

How much does it add to my compile times?

 Our (very) preliminary results say that around 3x

Does it integrate with IntelliJ?

Tighter integration

Does it integrate with IntelliJ?

The new Kotlin Frontend IR promises better integration

Our plan is to migrate once the API stabilizes

Tighter integration

Does it integrate with GitHub? 😉

arrow-kt.io

